POST - SELECTION INFERENCE By Richard Berk
نویسندگان
چکیده
It is common practice in statistical data analysis to perform datadriven variable selection and derive statistical inference from the resulting model. Such inference enjoys none of the guarantees that classical statistical theory provides for tests and confidence intervals when the model has been chosen a priori. We propose to produce valid “post-selection inference” by reducing the problem to one of simultaneous inference and hence suitably widening conventional confidence and retention intervals. Simultaneity is required for all linear functions that arise as coefficient estimates in all submodels. By purchasing “simultaneity insurance” for all possible submodels, the resulting post-selection inference is rendered universally valid under all possible model selection procedures. This inference is therefore generally conservative for particular selection procedures, but it is always less conservative than full Scheffé protection. Importantly it does not depend on the truth of the selected submodel, and hence it produces valid inference even in wrong models. We describe the structure of the simultaneous inference problem and give some asymptotic results.
منابع مشابه
POST - SELECTION INFERENCE By Richard
It is common practice in statistical data analysis to perform datadriven variable selection and derive statistical inference from the resulting model. Such inference enjoys none of the guarantees that classical statistical theory provides for tests and confidence intervals when the model has been chosen a priori. We propose to produce valid “post-selection inference” by reducing the problem to ...
متن کاملPost - Selection Inference
It is common practice in statistical data analysis to perform datadriven variable selection and derive statistical inference from the resulting model. Such inference enjoys none of the guarantees that classical statistical theory provides for tests and confidence intervals when the model has been chosen a priori. We propose to produce valid “post-selection inference” by reducing the problem to ...
متن کاملValid Post-Selection Inference
It is common practice in statistical data analysis to perform data-driven variable selection and derive statistical inference from the resulting model. Such inference enjoys none of the guarantees that classical statistical theory provides for tests and confidence intervals when the model has been chosen a priori. We propose to produce valid “post-selection inference” by reducing the problem to...
متن کاملStatistical Inference After Model Selection∗
Conventional statistical inference requires that a model of how the data were generated be known before the data are analyzed. Yet in criminology, and in the social sciences more broadly, a variety of model selection procedures are routinely undertaken followed by statistical tests and confidence intervals computed for a “final” model. In this paper, we examine such practices and show how they ...
متن کامل